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ABSTRACT 

This paper is concerned with the laminar transfer of heat by forced convection where the velocity profile 
is taken to be parabolic. In the advection dominated case the problem is described mathematically by a 
singularly perturbed boundary value problem with a non-slip condition. It has been established both 
theoretically and computationally that numerical methods composed of upwind finite difference operators 
on special piecewise uniform meshes have the property that they behave uniformly well, regardless of the 
magnitude of the ratio of the advection term to the diffusion term. A variety of choices of special piecewise 
uniform mesh is examined and it is shown computationally that these lead to numerical methods also 
sharing this property. These results validate a previous theoretical result which is quoted. 
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INTRODUCTION 

The transfer of heat by the stationary flow of an incompressible fluid in an n-dimensional domain 
Ω (n = 2, 3) gives rise to a temperature distribution which satisfies the equation: 

where A is the Laplacian operator, K is the thermal conductivity of the fluid, p0 and Cp are the 
density and specific heat (at constant pressure), Q(x), ū(x), T(x) are respectively the density of 
heat sources, fluid velocity, and temperature at the point x. On the solid surface ∂Ω bounding 
the fluid, the temperature of the fluid is given by: 
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This problem can be transformed into the non-dimensional form: 

where : is the transformed domain with boundary d , x = x(x), xs = xs/l, s = 1 , . . . , n is the 
new non-dimensional variable, and 

where l, uo are respectively typical sizes of the domain Ω and the fluid velocity . The parameter 
ε and the function v( ) are given by: 

and To is a typical value of the temperature. The parameter ε = 1/Pe where Pe is the Peclet 
number. Note that (2a) is non-linear if: 

The parameter ε in (2a) may be arbitrarily small. In cases where ε tends to zero, boundary layers 
may appear in some neighbourhoods of the physical boundary of the fluid. This is due to the 
fact that in such cases (2a) is a singularly perturbed differential equation. If the boundary of 
the fluid is fixed, then: 

In a number of applied problems, e.g. a fluid moving between surfaces or in tubes, the velocity 
vector has a parabolic profile in the direction orthogonal to the streamlines. The boundary 
layers which appear in such problems are described by equations of parabolic type of dimension 
n — 1, where the variable along the streamlines plays the role of the time variable, and hence 
they are called parabolic layers. 

Two distinct classes of parabolic layers may be identified. The first is the class of non-degenerate 
parabolic boundary layers where | (x)| > 0 in a closed neighbourhood of the relevant part of 
the boundary. Layers in this class are described by singularly perturbed parabolic equations 
with coefficients which are strictly greater than zero. The second is the class of degenerate 
parabolic boundary layers where | (x)| > 0 in an open neighbourhood of the relevant part of 
the boundary and (x) = 0 on that part of the boundary. Layers in this class are described by 
singularly-perturbed parabolic equations in which the coefficients multiplying the time-like 
derivatives are equal to zero on the physical boundary. This means that the parabolic equations 
degenerate on this part of the boundary to equations of elliptic type. It follows that if the velocity 

satisfies the no-slip condition (4) on the physical boundary, the corresponding parabolic layer 
is degenerate. For a discussion of various kinds of boundary layers and their asymptotic 
behaviour, see Vishik and Lyusternik5, Il'in2, Shih and Kellogg3 and the references cited therein. 

In this paper, problems of the form (2) in two dimensions are examined and an ε-uniform 
finite difference method is described and investigated. The accuracy of the method does not 
depend on the value of the parameter £, but only on the number of nodes used. The maximum 
error tends to zero as the number of nodes increases. This means that the accuracy depends 
only on the amount of computation performed. Theoretical results for both non-degenerate and 
degenerate parabolic boundary layers are presented in Shishkin4, where ε-uniform finite difference 
methods are also constructed. A preliminary version of this work appeared in Hegarty et al.1. 
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PROBLEM FORMULATION 
In the unit square 

Ω = (0, 1) × (0, 1) (5) 
with the boundary ∂Ω = \Ω, consider the boundary value problem 

where 
∂Ω = ∂ΩD u ∂Ωo, ∂Ωo = {x:x1 = 1,0 < x2 < 1} 

and ∂/∂n is the derivative normal to ∂Ωo i.e., ∂/∂n = ∂/∂x1. The functions f, ø and ψ are 
assumed to be sufficiently smooth. The parameter ε takes any value in (0,1]. Compatibility 
conditions on the boundary data sufficient to guarantee a smooth solution are assumed at the 
corners of ∂Ω. It is also assumed that the function f(x) satisfies: 

Here and below, M, m denote sufficiently large, respectively small, generic positive constants 
which are independent of the parameter ε. In the case of the discrete problem, these constants 
are also independent of the mesh parameters. This condition ensures that the solution of (6) is 
bounded £-uniformly. 

The two edges ∂Ωc = {x : x2 = 0,1 ;0 < x1 < 1} are characteristics of the reduced equation 
(6a) with ε = 0. As the parameter ε tends to zero, boundary layers appear in the neighbourhood 
of this part of the boundary. These are described by the parabolic equation: 

The coefficient of ∂u/∂x1 is equal to zero on the set ∂ΩC. This part of the boundary is parallel 
to the streamlines. 

In the next section a finite difference method is constructed for problem (6) whose solutions 
converge ε-uniformly on a special piecewise-uniform mesh condensing in the neighbourhood of 
the boundary layer. The recipe for condensing the nodes depends on a priori estimates of the 
solution and its derivatives given in Hegarty et al.1. 

In the neighbourhood of the boundary layer, derivatives in a direction normal to the boundary 
∂Ωc (the characteristic part of the boundary) increase unboundedly as ε tends to zero. In a 
neighbourhood of the boundary layer, the natural variables are p2(x)ε-1/3, x1 where p2(x) is the 
distance from the point xεΩ to the set ∂Ωc. Outside a neighbourhood of the boundary layer, 
the derivatives in the direction normal to the boundary ∂ΩC are bounded £-uniformly. The partial 
derivatives for the regular part of the solution and for the first term in the expansion of the 
singular part of the solution (i.e. the partial derivatives in the direction tangential to the boundary 
∂Ωc) are bounded £-uniformly. 

SPECIAL FINITE DIFFERENCE METHODS 
To solve the boundary value problem (6) we use standard finite difference operators on special 
piecewise-uniform meshes; On the set = Ωu∂Ω we introduce the special mesh 

(7) 
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where 1 is a uniform mesh 

and *
2 is a special piecewise uniform mesh constructed as follows. The interval [0,1] is divided 

into three parts: 
[0, σ], [σ, l - σ], [1 - σ, 1] 

where σε(0,1/4] depends on ε and N2 and is given by: 
σ = min[1/4,mε1/3g(N2)] (8) 

where m is an arbitrary positive number and g(N2) is an arbitrary increasing function g(N2) →∞ 
and g(N2)N2

-1 → 0 as N2 →∞. The intervals [0, σ], [1 — σ, 1] are divided into N2/4 equal parts 
and the interval [σ, 1 — σ] is divided into N2/2 equal parts. 

To solve problem (6) we use the finite difference method: 

to find a numerical approximation z(x) to the solution u(x). Here δs
2z(x), s = 1,2 are second-order 

differences defined by: 
δ2

sz(x) = (D+
sz(x) - D-

sz(x))/hs 

and D+
sz(x), D-

sz(x) are forward, backward differences. 
The £-uniform convergence and error estimate for this numerical method are contained in the 

following theorem. 
Theorem 1. The solutions of the finite difference method consisting of the classical finite difference 
operator (9) on the special piecewise uniform mesh (7) converge ε-uniformly as N2 → ∞ to the 
solution of problem (6) provided that g(N2) = √N2. Moreover, the following error estimate holds 
with this choice of the function g: 

A proof of this theorem may be found in Shishkin4. It should be noted that the solutions of the 
finite difference method (9), (7) converge ε-uniformly for any increasing function g(N), g(N) → ∞ 
and g(N)N-1 → 0 as N → ∞. In the next section, this will be verified numerically, by examining 
the convergence properties of the numerical solutions, from various choices of the function g(N), 
applied to two particular examples of problem (6). 

COMPUTATION OF THE TEMPERATURE DISTRIBUTION IN A MOVING 
LIQUID: AN EXAMPLE 

Suppose it is required to find the temperature distribution in a liquid flowing between two 
parallel plates a distance / apart. Consider a section of the flow of width l orthogonal to the 
direction of the flow. The temperature distribution is described by (la). After a transformation, 
the equations may be written in the form (2). 

Let the distance l between the plates be 10~2 m, the density of the liquid po = 103 kg m - 3 , 
the thermal conductivity K = 0.58 W (mK)-1 and the specific heat Cp = 4190 J (kg K) - 1 . It 
follows that ε = 1.385 x 10 -5uo

-1 m s - 1 , and so if uo = 1.385 × 10 -2 ms - 1 , then ε = 10 -3. Let 
the maximum temperature on the surface be TE = 100°C, and let the density of the heat sources 
in the medium be zero (Q(x) = 0). Suppose that the temperature on the upper edge changes 
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from 0 to 100°C, according to: T{x) = (TEx1)/l, 0 ≤ x1 ≤l, x2 = 1, and that the temperature is 
zero both on the lower edge and at the inflow boundary. A natural (Neumann) boundary 
condition is given at the outflow boundary: ∂T/∂x1 = 0, x1 = l. Let the symbol x now represent 
the undimensionalized coordinate. The above leads to the following boundary value problem for 
the non-dimensional variable u(x) = T(x)/T0, where To = TE= 100°C: 

The special mesh *
N consists of a piecewise uniform mesh in the x2-direction and a uniform 

mesh in the x1-direction. In the x2-direction, the interval [0, 1] is subdivided into three 
subintervals: 

[0, σ], [σ,1 - σ], [1 - σ, 1] where σ = min{ε1/3g(N), ¼} 
On each of the three subintervals a uniform mesh is used with: N/2 mesh points in [σ, 1 — σ], 
N/4 mesh points in [0, σ], and [1 — σ, 1]. We consider the three cases g(N) ≡ In N, √N and 
N1/3. With this distribution of the mesh points, the mesh *

N tends to a uniform mesh when ε is 
large. The mesh *

N is depicted in Figure 1 in the case where g(N) ≡ ln N, N = 32 and ε = 10 -5. 
The following finite difference method with the above special mesh *

N will now be considered: 

The solution of (11) with ε = 10 -5, N = 32 and g{N)≡ 1n N is shown in Figure 2. It can be 
observed that the solution is zero except in the neighbourhood of the boundary layer at the 
edge {x:x2 = 1; 0 < x1 < 1}. Equation (11) is solved on a sequence of meshes, with N = 8, 16, 
32, 64, 128, 256, where N is the number of mesh elements used in both directions. The errors 
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|u(xi,yj) — z(xi, yj)| are approximated for successive values of ε on the five coarser meshes by 
εε

N(i,j) — |zl
256(xi,yj) — zN(xi, yj)|, where the superscript indicates the number of mesh elements 

used and the subscript I denotes interpolation. For each ε and N the maximum nodal error is 
approximated by: 

Eε,N = max εε
N(i,j) 

i.j 

For each N define: 
EN = max Eε,N 

Table 1 Eε,N and EN for (11) on the special mesh Ω*
N with g(N) = 1n N 

ε 

1 
2 - 2 

2-4 

2 − 4 

2 − 8 

2 − 10 

2 − 12 

2 − 1 4 

2− 16 

2 - 1 8 

2 - 2 0 

2 − 2 2 

2 - 2 4 

2 - 2 6 

2 - 2 8 

2 - 3 0 

2 - 3 2 

EN 

N = 8 

0.627 × 10−1 

0.644 × 10−1 

0.683 × 10−1 

0.702 × 10−1 

0.695 × 10−1 

0.633 × 10−1 

0.660 × 10−1 

0.671 × 10−1 

0.677 × 10−1 

0.681 × 10−1 

0.684 × 10−1 

0.685 × 10−1 

0.686 × 10−1 

0.686 × 10−1 

0.686 × 10−1 

0.687 × 10−1 

0.687 × 10−1 

0.687 × 10−1 

N = 16 

0.322 × 10−1 

0.327 ×x 10−1 

0.339 × 10−1 

0.352 × 10−1 

0.377 × 10−1 

0.417 × 10−1 

0.438 × 10−1 

0.444 × 10−1 

0.446 × 10−1 

0.447 × 10−1 

0.447 × 10−1 

0.447 × 10−1 

0.447 × 10−1 

0.447 × 10−1 

0.447 × 10−1 

0.447 × 10−1 

0.447 × 10−1 

0.447 × 10−1 

N = 32 

0.156 × 10−1 

0.157 × 10−1 

0.160 × 10−1 

0.164 × 10−1 

0.173 × 10−1 

0.191 × 10−1 

0.217 × 10−1 

0.227 × 10−1 

0.232 × 10−1 

0.234 × 10−1 

0.235 × 10−1 

0.235 × 10−1 

0.236 × 10−1 

0.236 × 10−1 

0.236 × 10−1 

0.236 × 10−1 

0.236 × 10−1 

0.236 × 10−1 

N = 64 

0.688 × 10− 2 

0.691 × 10−2 

0.698 × 10−2 

0.707 × 10−2 

0.729 × 10−2 

0.780 × 10−2 

0.883 × 10−2 

0.961 × 10−2 

0.101 × 10−1 

0.104 × 10−1 

0.106 × 10−1 

0.106 × 10−1 

0.106 × 10−1 

0.107 × 10−1 

0.107 × 10−1 

0.107 × 10−1 

0.107 × 10−1 

0.107 × 10 − 1 

N = 1 2 8 

0.240 × 10−2 

0.240 × 10−2 

0.242 × 10−2 

0.243 × 10−2 

0.247 × 10−2 

0.256 × 10−2 

0.276 × 10−2 

0.330 × 10−2 

0.348 × 10−2 

0.362 × 10−2 

0.370 × 10−2 

0.374 × 10−2 

0.375 × 10− 

0.376 × 10−2 

0.376 × 10−2 

0.376 × 10−2 

0.376 × 10−2 

0.376 × 10 − 2 

Table 2 Eε,N and EN for (11) on the special mesh Ω*
N with g(N) = √N 

ε 

1 
2 − 2 

2 − 4 

2 − 6 

2 - 8 

2−10 

2 − 1 2 

2 − 1 4 

2 − 1 6 

2 − 1 8 

2 − 2 0 

2 − 2 2 

2 − 2 4 

2 − 2 6 

2 - 2 8 

2 − 3 0 

2 − 3 2 

EN 

N = 8 

0.627 × 10−1 

0.644 × 10−1 

0.683 × 10−1 

0.702 × 10−1 

0.695 × 10−1 

0.464 × 10−1 

0.330 × 10−1 

0.327 × 10−1 

0.320 × 10−1 

0.341 × 10−1 

0.340 × 10−1 

0.339 × 10−1 

0.339 × 10−1 

0.339 × 10−1 

0.339 × 10−1 

0.338 × 10−1 

0.338 × 10−1 

0.702 × 10−1 

N= 16 

0.322 × 10−1 

0.327 × 10−1 

0.339 × 10−1 

0.352 × 10−1 

0.377 × 10−1 

0.417 × 10−1 

0.427 × 10−1 

0.431 × 10−1 

0.440 × 10−1 

0.418 × 10−1 

0.418 × 10−1 

0.418 × 10−1 

0.418 × 10−1 

0.418 × 10−1 

0.418 × 10−1 

0.418 × 10−1 

0.418 × 10−1 

0.440 × 10−1 

N = 32 

0.156 × 10−1 

0.157 × 10−1 

0.160 × 10−1 

0.164 × 10−1 

0.173 × 10−1 

0.191 × 10−1 

0.226 × 10−1 

0.274 × 10−1 

0.283 × 10−1 

0.280 × 10−1 

0.280 × 10−1 

0.280 × 10−1 

0.281 × 10−1 

0.281 × 10−1 

0.281 × 10−1 

0.281 × 10−1 

0.281 × 10−1 

0.283 × 10−1 

N = 64 

0.688 × 10− 2 

0.691 × 10 − 2 

0.698 × 10− 2 

0.707 × 10− 2 

0.729 × 10− 2 

0.780 × 10− 2 

0.883 × 10− 2 

0.110 × 10−1 

0.135 × 10−1 

0.121 × 10−1 

0.122 × 10−1 

0.122 × 10−1 

0.122 × 10−1 

0.122 × 10−1 

0.122 × 10−1 

0.122 × 10−1 

0.122 × 10−1 

0.135 × 10−1 

N = 128 

0.240 × 10− 2 

0.240 × 10−2 

0.242 × 10− 2 

0.243 × 10− 2 

0.247 × 10− 2 

0.256 × 10− 2 

0.276 × 10− 2 

0.326 × 10− 2 

0.417 × 10− 2 

0.363 × 10− 2 

0.640 × 10− 2 

0.642 × 10− 2 

0.643 × 10− 2 

0.643 × 10− 2 

0.643 × 10− 2 

0.643 × 10− 2 

0.643 × 10− 2 

0.643 × 10− 2 
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From Tables 1, 2 and 3, the solutions of the finite difference method (11) for each choice of g(N) 
are ε-uniformly convergent. That is, for all values of ε, the maximum nodal error decreases as 
N increases, for N sufficiently large. For the particular problem (10), the last row of Table 4 
indicates numerically that the maximum error is guaranteed to be less than 1°C for N ≥ 64 for 
all values of Ε. 

A numerical method is said to be e-uniform of order p on the mesh ΩN if 

where C and p > 0 are independent of ε and N. For each value of N and ε the order of convergence 
p is approximated numerically by: 

For each value of N the quantities: 

are computed and the value pN is taken as an estimate of the ε-uniform convergence rate. Values 
of pN and for g(N) = 1n N, √N and N1/3 are presented in Table 4. 

Table 3 Eε.N and EN for (11) on the special mesh Ω*
N with g(N) = A1/3 

ε 

1 
2 - 2 

2−2 

2−4 

2 − 8 

2−10 

2−12 

2−14 

2−16 

2−18 

2−20 

2
−22 

2−24 

2−26 

2
−28 

2−30 

2
−32 

EN 

N = & 

0.627 × 10−1 

0.644 × 10−1 

0.683 × 10−1 

0.702 × 10−1 

0.695 × 10−1 

0.660 × 10−1 

0.691 × 10−1 

0.708 × 10−1 

0.718 × 10−1 

0.723 × 10−1 

0.726 × 10−1 

0.728 × 10−1 

0.729 × 10−1 

0.730 ×x 10−1 

0.730 × 10−1 

0.730 × 10−1 

0.730 × 10−1 

0.730 × 10−1 

AT = 1 6 

0.322 × 10−1 

0.327 × 10−1 

0.339 × 10−1 

0.325 × 10−1 

0.377 × 10−1 

0.417 × 10−1 

0.436 × 10−1 

0.448 × 10−1 

0.451 × 10−1 

0.453 × 10−1 

0.453 × 10−1 

0.453 × 10−1 

0.453 × 10−1 

0.453 × 10−1 

0.453 × 10−1 

0.453 × 10−1 

0.453 × 10−1 

0.453 × 10−1 

N = 32 

0.156 × 10−1 

0.157 × 10−1 

0.160 × 10−1 

0.164 × 10−1 

0.173 × 10−1 

0.191 × 10−1 

0.215 × 10−1 

0.223 × 10−1 

0.229 × 10−1 

0.232 × 10−1 

0.233 × 10−1 

0.233 × 10−1 

0.234 × 10−1 

0.234 × 10−1 

0.234 × 10−1 

0.234 × 10−1 

0.234 × 10−1 

0.234 × 10−1 

N = 64 

0.688 × 10−2 

0.691 × 10−2 

0.698 × 10−2 

0.707 × 10−2 

0.729 × 10−2 

0.780 × 10−2 

0.883 × 10−2 

0.986 × 10−2 

0.104 × 10−1 

0.106 × 10−1 

0.108 × 10−1 

0.108 × 10−1 

0.109 × 10−1 

0.109 × 10−1 

0.109 × 10−1 

0.109 × 10−1 

0.109 × 10−1 

0.109 × 10−1 

N= 128 

0.240 × 10−2 

0.240 × 10−2 

0.242 × 10−2 

0.243 × 10−2 

0.247 × 10−2 

0.256 × 10−2 

0.276 × 10−2 

0.338 × 10−2 

0.357 × 10−2 

0.370 × 10−2 

0.377 × 10−2 

0.380 × 10−2 

0.382 × 10−2 

0.382 × 10−2 

0.383 × 10−2 

0.383 × 10−2 

0.383 × 10−2 

0.383 × 10−2 

Table 4 Orders of convergence pN 

9(N) 

1n N 
√N 
N1/3 

N = 8 

0.92 
0.08 
0.97 

N = 16 

1.09 
0.81 
1.04 

N = 32 

1.08 
1.05 
1.04 

N = 64 

1.03 
1.12 
1.02 
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From Table 4 it can be seen that in the cases g(N) = 1n N and g(N) = N1/3, the finite difference 
operator (4.3) on the special mesh Ω*

N is higher ε-uniformly convergent of first order. This 
is a considerably bigger rate than that predicted by Theorem 1. In the case g(N) = √N, N needs 
to be sufficiently large, that is greater than 32, for a ε-uniform convergence rate of 1 to be attained. 

As a further test of the effectiveness of the ε-uniform method (9), numerical solutions of the 
following problem are obtained. The main difference between this and the first problem is a 

Table 5 £ε,N and EN for (13) on the special mesh Ω*
N with g(N) = 1n N 

£ 

1 
2 − 2 

2
−4 

2
−6 

2
−8 

2−10 

2
−12 

2−14 

2−16 

2
−18 

2−20 

2−22 

2−24 

2−26 

2−28 

2
−30 

2−32 

EN 

N = 8 

0.701 × 10−1 

0.748 × 10−1 

0.102 
0.100 
0.102 
0.107 
0.111 
0.114 
0.115 
0.116 
0.116 
0.116 
0.116 
0.116 
0.117 
0.117 
0.117 

0.117 

N = 16 

0.340 × 10−1 

0.325 × 10−1 

0.495 × 10−1 

0.490 × 10−1 

0.482 × 10−1 

0.521 × 10−1 

0.552 × 10−1 

0.561 × 10−1 

0.565 × 10−1 

0.566 × 10−1 

0.567 × 10−1 

0.567 × 10−1 

0.567 × 10−1 

0.567 × 10−1 

0.567 × 10−1 

0.567 × 10−1 

0.567 × 10−1 

0.567 × 10−1 

N = 32 

0.160 × 10−1 

0.163 × 10−1 

0.231 × 10−1 

0.230 × 10−1 

0.222 × 10−1 

0.235 × 10−1 

0.250 × 10−1 

0.256 × 10−1 

0.262 × 10−1 

0.265 × 10−1 

0.266 × 10−1 

0.267 × 10−1 

0.267 × 10−1 

0.267 × 10−1 

0.267 × 10−1 

0.267 × 10−1 

0.267 × 10−1 

0.267 × 10−1 

N = 64 

0.697 × 10−2 

0.703 × 10−2 

0.987 × 10−2 

0.991 × 10−2 

0.950 × 10−2 

0.101 × 10−2 

0.107 × 10−1 

0.109 × 10−1 

0.111 × 10−1 

0.112 × 10−1 

0.114 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

N= 128 

0.241 × 10−2 

0.242 × 10−2 

0.329 × 10−2 

0.331 × 10−2 

0.316 × 10−2 

0.333 × 10−2 

0.351 × 10−2 

0.366 × 10−2 

0.317 × 10−2 

0.376 × 10−2 

0.379 × 10−2 

0.383 × 10−2 

0.385 × 10−2 

0.385 × 10−2 

0.386 × 10−2 

0.386 × 10−2 

0.386 × 10−2 

0.386 × 10−2 
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non-zero source term on the right-hand side of the transport equation (6). 

Table 6 EεN and EN for (13) on the special mesh Ω*
N with g{N) = √N 

ε 

1 
2 − 2 

2
−4 

2
−6 

2−8 

2−10 

2−12 

2−14 

2−16 

2−18 

2−20 

2
−22 

2−24 

2−26 

2−28 

2−30 

2−32 

EN 

N = 8 

0.701 × 1 0 - 1 

0.748 × 10−1 

0.102 
0.100 
0.102 
0.108 
0.103 
0.103 
0.103 
0.103 
0.103 
0.103 
0.103 
0.103 
0.103 
0.103 
0.103 

0.108 

AT = 16 

0.340 × 10−1 

0.352 × 10−1 

0.495 × 10−1 

0.490 × 10−1 

0.482 × 10−1 

0.521 × 10−1 

0.594 × 10−1 

0.600 × 10−1 

0.603 × 10−1 

0.600 × 10−1 

0.601 × 10−1 

0.602 × 10−1 

0.602 × 10−1 

0.602 × 10−1 

0.602 × 10−1 

0.602 × 10−1 

0.602 × 10−1 

0.603 × 10−1 

AT = 32 

0.160 × 10−1 

0.163 × 10−1 

0.231 × 10−1 

0.230 × 10−1 

0.222 × 10−1 

0.235 × 10−1 

0.250 × 10−1 

0.286 × 10−1 

0.290 × 10−1 

0.288 × 10−1 

0.289 × 10−1 

0.289 × 10−1 

0.289 × 10−1 

0.289 × 10−1 

0.289 × 10−1 

0.289 × 10−1 

0.289 × 10−1 

0.290 × 10−1 

AT = 64 

0.697 × 10− 2 

0.703 × 10−2 

0.987 × 10−2 

0.991 × 10−2 

0.950 × 10−2 

0.101 × 10−1 

0.107 × 10−1 

0.116 × 10−1 

0.126 × 10−1 

0.119 × 10−1 

0.119 × 10−1 

0.120 × 10−1 

0.120 × 10−1 

0.120 × 10−1 

0.120 × 10−1 

0.120 × 10−1 

0.120 × 10−1 

0.126 × 10−1 

N = 128 

0.241 × 10−2 

0.242 × 10−2 

0.329 × 10−2 

0.331 × 10−2 

0.316 × 10−2 

0.333 × 10−2 

0.351 × 10−2 

0.370 × 10−2 

0.406 × 10−2 

0.501 × 10−2 

0.502 × 10−2 

0.503 × 10−2 

0.504 × 10−2 

0.504 × 10−2 

0.504 × 10−2 

0.504 × 10−2 

0.504 × 10−2 

0.504 × 10−2 

Table 7 Eε,N and EN for (13) on the special mesh Ω*
N with g(N) = N1/3 

ε 

1 
2 − 2 

2
−4 

2−6 

2 − 8 

2-−10 

2−12 

2−14 

2−16 

2−18 

2−20 

2−22 

2−24 

2−26 

2−28 

2−30 

2
−32 

EN 

N = 8 

0.701 × 10−1 

0.748 × 10−1 

0.102 
0.100 
0.102 
0.107 
0.111 
0.114 
0.115 
0.116 
0.116 
0.117 
0.117 
0.117 
0.117 
0.117 
0.117 

0.117 

N=16 

0.340 × 10−1 

0.325 × 10−1 

0.495 × 10−1 

0.490 × 10−1 

0.482 × 10−1 

0.521 × 10−1 

0.545 × 10−1 

0.558 × 10−1 

0.563 × 10−1 

0.564 × 10−1 

0.565 × 10−1 

0.565 × 10−1 

0.565 × 10−1 

0.565 × 10−1 

0.565 × 10−1 

0.565 × 10−1 

0.565 × 10−1 

0.565 × 10−1 

N = 32 

0.160 × 10−1 

0.163 × 10−1 

0.231 × 10−1 

0.230 × 10−1 

0.222 × 10−1 

0.235 × 10−1 

0.250 × 10−1 

0.253 × 10−1 

0.261 × 10−1 

0.264 × 10−1 

0.265 × 10−1 

0.266 × 10−1 

0.266 × 10−1 

0.266 × 10−1 

0.266 × 10−1 

0.266 × 10−1 

0.266 × 10−1 

0.266 × 10−1 

N = 64 

0.697 × 10−2 

0.703 × 10−2 

0.987 × 10−2 

0.991 × 10−2 

0.950 × 10−2 

0.101 × 10−1 

0.107 × 10−1 

0.109 × 10−1 

0.111 × 10−1 

0.113 × 10−1 

0.114 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

0.115 × 10−1 

N =128 

0.241 × 10−2 

0.242 × 10−2 

0.392 × 10−2 

0.331 × 10−2 

0.316 × 10−2 

0.333 × 10−2 

0.351 × 10−2 

0.372 × 10−2 

0.376 × 10−2 

0.377 × 10−2 

0.380 × 10−2 

0.384 × 10−2 

0.385 × 10−2 

0.386 × 10−2 

0.386 × 10−2 

0.386 × 10−2 

0.386 × 10−2 

0.386 × 10−2 
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Table 8 Orders of convergence pH 

q(N) 

1n N 
√N 
N1/3 

N = 8 

1.14 
0.80 
1.25 

N= 16 

1.08 
1.10 
1.05 

N = 32 

1.02 
1.03 
1.01 

N = 64 

1.00 
0.96 
1.00 

To solve this problem numerically, the following finite difference method with the special mesh 
*

N will be considered: 

The solution of (13) with ε = 10 -5, N = 32 and g(N) = 1n N is shown in Figure 3. Eε,N and EN 
are calculated as for (11) and shown in Tables 5, 6 and 7 for g(N) = 1nN, √N and N1/3, 
respectively. 

From Tables 5, 6 and 7, the solutions of the finite difference method (13) for each choice of 
g(N) are ε-uniformly convergent. Again, for all values of ε, the maximum nodal error decreases 
as N increases. 

From Table 8 it can be seen that in the cases g{N) = 1n N and g(N) = N1/3, the finite difference 
operator (13) on the special mesh Ω*

N is seen to be ε-uniformly convergent of first order. This 
is considerably higher rate than that predicted by Theorem 1. In the case g(N) = √N, N needs 
to be greater than 16, for a ε-uniform convergence rate of 1 to be attained. 

REFERENCES 

1 Hegarty, A. F., Miller, J. J. H., O'Riordan, E. and Shishkin, G. I. Numerical results for a convection-diffusion problem 
with a non-slip condition, Proc. 6th Int. Conf. Boundary and Interior Layers (Ed. J. J. H. Miller), Front Range Press, 
Colorado, pp. 67-68 (1992) 

2 Il'in, A. M. Method of matched asymptotic expansions, BAIL IV, Proc. Fourth Int. Conf. Interior and Boundary Layers 
(Eds. S. K. Godunov, J. J. H. Miller and V. A. Novikov), Boole Press, Dublin, pp. 98-109 (1986) 

3 Shih, S. D. and Kellogg, R. B. Asymptotic analysis of a singular perturbation problem, SIAM J. Math. Anal., 18, 
1467-1511 (1987) 

4 Shishkin, G. I. Grid approximation of singularly perturbed parabolic equations degenerating on the boundary, 
J. Vychisl. Mat. Mat. Fis., 31, 963-977 (1991) (in Russian) 

5 Vishik, J. K. and Lyusternik, L. A. Regular degeneration and boundary layer for linear differential equations with a 
small parameter, Uspekhi. Mat. Nauk., 12 (5), 3-122 (1957); Am. Math. Soc. Transl., 20 (2), 239-364 (1962) 


